
Getting started with the
REST API
There's no better way to automate Syncplify Server! management and configuration tasks than by
scripting against our comprehensive REST API.

We've invested significant effort in creating detailed OpenAPI v3 documentation for every REST
endpoint. This specification is:

Available in the official manual
Accessible through web-based documentation UIs
Downloadable as raw JSON files for integration with API tools like Postman, Insomnia, or
Bruno

Key Security Consideration: As enterprise security software, Syncplify Server! intentionally
avoids long-lived API keys. Instead, our authentication flow requires:

1. Initial login API call to obtain a time-limited JWT
2. Use of this session token for subsequent API calls
3. Automatic token expiration for enhanced security

Below is a practical bash example (requires curl and jq , assumes local Syncplify Server!
installation at 127.0.0.1:6443):

This article assumes basic familiarity with scripting concepts (bash, zsh, fish, PowerShell, or
languages like Python). No advanced expertise is required – just the ability to execute API
calls and handle responses.

#!/bin/bash

Fetch the JSON response to the /login API and extract the token
token=$(curl --request GET --url https://127.0.0.1:6443/api/v1/sa/login --header 'authorization: Basic XXXXXXXX'
| jq -r '.token')

Call any other REST API using the authorization token you received upon login

Example: list all virtual sites

https://docs.syncplify.com/v6/docs/adminrest/openapi.html
https://openapi.syncplify.com/v6/webrest/

The script here above:

1. Performs the login as SuperAdmin, receiving a short-lived JWT (token) that authorizes only
SuperAdmin-related API calls

2. Calls an API (GET) to receive the list and details of all virtual sites
3. Calls another API (PATCH) to modify a few minor aspects of the SuperAdmin UI

configuration
4. Calls the logout API to invalidate the temporary JWT, from this point on every API call done

using this JWT (even valid ones) will be rejected as unauthorized

Here's a PowerShell version of the exact same script (with the exact same assumptions as above
):

curl --request GET \
 --url https://127.0.0.1:6443/api/v1/sa/vsites \
 --header "Authorization: Bearer $token"

Example: modify some aspects of the SuperAdmin global configuration
curl --request PATCH \
 --url https://127.0.0.1:6443/api/v1/sa/globalconfig \
 --header "Aauthorization: Bearer $token" \
 --header 'Content-Type: application/json' \
 --data '{
 "jwtLifeSpan": 30,
 "metricsAllowList": [
 "192.168.10.0/32"
]
}'

#At the end of your session, do not forget to logout
curl --request GET \
 --url https://127.0.0.1:6443/api/v1/sa/logout \
 --header "Authorization: Bearer $token"

Login and get token (note case-insensitive headers in PowerShell)
$loginResponse = Invoke-RestMethod -Uri "https://127.0.0.1:6443/api/v1/sa/login" `
 -Method Get `
 -Headers @{ 'authorization' = 'Basic XXXXXXXX' }

$token = $loginResponse.token

List all virtual sites

If your server is running on a self-signed certificate, you may also want to consider the following:

This is the Admin login API called from a bash script:

$vSites = Invoke-RestMethod -Uri "https://127.0.0.1:6443/api/v1/sa/vsites" `
 -Method Get `
 -Headers @{ Authorization = "Bearer $token" }

$vSites | Format-Table # Display results in table format

Modify global configuration (note typo in original header name)
$body = @{
 jwtLifeSpan = 30
 metricsAllowList = @('192.168.10.0/32')
} | ConvertTo-Json

Invoke-RestMethod -Uri "https://127.0.0.1:6443/api/v1/sa/globalconfig" `
 -Method Patch `
 -Headers @{
 # Original script had typo: 'Aauthorization' instead of 'Authorization'
 'Authorization' = "Bearer $token"
 'Content-Type' = 'application/json'
 } `
 -Body $body

Logout to end session
Invoke-RestMethod -Uri "https://127.0.0.1:6443/api/v1/sa/logout" `
 -Method Get `
 -Headers @{ Authorization = "Bearer $token" }

For self-signed certificates (PowerShell 7+):
$ProgressPreference = 'SilentlyContinue' # Suppress progress noise

Add -SkipCertificateCheck to ALL Invoke-RestMethod calls
Invoke-RestMethod ... -SkipCertificateCheck

Please note: all of the example code above shows you how to use REST APIs in the
SuperAdmin category, exclusively to perform SuperAdmin actions and tasks. To perform
Admin tasks, the logic is exactly the same but you will have to login using the Admin login
API to obtain an Admin JWT instead.

And its PowerShell equivalent:

We hope that this brief introduction will help you get started using our REST API more quickly and
painlessly.

#!/bin/bash

Fetch the JSON response to the Admin API /login endpoint and extract the token
token=$(curl --request GET --url https://127.0.0.1:6443/api/v1/adm/login --header 'authorization: Basic
XXXXXXXX' | jq -r '.token')

Admin login API, and acquisition of the Admin JWT token from the response
$loginResponse = Invoke-RestMethod -Uri "https://127.0.0.1:6443/api/v1/adm/login" `
 -Method Get `
 -Headers @{ 'authorization' = 'Basic XXXXXXXX' }

$token = $loginResponse.token

Revision #3
Created 26 March 2025 20:38:29 by DevTeam
Updated 7 April 2025 23:34:35 by DevTeam

