
Syncplify AFT!
This knowledge base covers topics like installation, configuration, and operation of your Syncplify
AFT! scriptable/automated file transfer client.

Operation

Understanding what Syncplify AFT! is
Forgot your AFT! admin password? Here's what to do
How to start AFT! jobs via REST API but using the command-line
Alternative (lower-level) way to start a script via PowerShell and REST API

Scripting

How to monitor a local folder and upload files to your SFTP server when they
change

Operation
Topics that cover typical operational tasks in Syncplify AFT!

Operation

Understanding what
Syncplify AFT! is
True Managed File Transfer (MFT) requires the interoperation of 2 parts:

a file transfer server (that's what Syncplify Server! is)
an automated file transfer client (that's what Syncplify AFT! is)

While Syncplify Server! has been well established on the market as one of the overall best
SFTP/FTPS servers for several years, we just recently released its MFT counterpart: Syncplify AFT!

The video here below shows the main features found in Syncplify AFT! and is a good general
overview of the product itself.

https://www.youtube.com/embed/0qdROnpPezE

https://www.syncplify.me/syncplify-server.html
https://www.syncplify.me/aft-client.html
https://www.youtube.com/embed/0qdROnpPezE

Operation

Forgot your AFT! admin
password? Here's what to do
AFT! supports multiple administrative profiles, so the best thing to do when an administrator forgot
their password is simply to log in with a different admin profile, and reset the password of the
admin who has forgotten it.

But what if you only had 1 admin profile, and you forgot its password? How to regain access to AFT!
in that case? No worries, here's a little trick that can get you back in your AFT! instance without
losing any of your scripts and/or configuration.

First of all, locate your AFT!'s configuration data directory.

In that directory there is a file named init (no extension). Now simply delete that file named init
.

Once you have deleted the init file, launch your browser again, and try to connect to your AFT!'s
web UI. You'll notice that you will be asked to create a brand new administrative profile when you
do so.

https://kb.syncplify.com/uploads/images/gallery/2023-07/TPYimage.png

That's it. Create a new admin profile, and you'll be right back into your AFT! web UI.

https://kb.syncplify.com/uploads/images/gallery/2023-07/Idbimage.png

Operation

How to start AFT! jobs via
REST API but using the
command-line
As of version 3.0, Syncplify.me AFT! has added the capability to start jobs via the START
command-line switch and parameters. To be clear, unlike the RUN command (which executes a
script from file in the context of whatever shell you invoked it) the START command will actually
call a REST API for you to start the job within the context of the Syncplify.me AFT! system service.

First of all, you need to make sure you meet the prerequisites, which is basically only one: you
need to create an API Key from inside AFT!'s web interface, and make sure such API Key can be
used from the IP address you'll be calling it from. Here's an example API Key that will work when
invoked from 127.0.0.1 (localhost):

Once you have the API Key, you can use it to invoke the START command via command-line.

Here's the simplest example, using only the API Key and the ID of the script you want to run:

https://kb.syncplify.com/uploads/images/gallery/2023-07/6Bhimage.png

Once you have the API Key, you can use it to invoke the START command via command-line.

Here's a complete example, which also explicitly adds the optional HOST and PARAMETERS
command-line payload:

Both of these examples assume you're invoking them from PowerShell... please keep in mind that
other shells (like cmd.exe or Unix/Linux shells) may have different string "escaping" mechanisms
and notations.

.\aft.exe start -s "p3fEoexohdHj6SXrvuT8H8" -a "xiM2ruBm2QZkhTSN6BPd9BqmxVEBVbrgNYVMkNQb6hfj"

.\aft.exe start -s "p3fEoexohdHj6SXrvuT8H8" -a "xiM2ruBm2QZkhTSN6BPd9BqmxVEBVbrgNYVMkNQb6hfj" --
params "[{\`"name\`":\`"character\`",\`"value\`":\`"goofy\`"}]" --host "127.0.0.1:44399"

Operation

Alternative (lower-level) way
to start a script via
PowerShell and REST API
With Syncplify AFT! you have quite a few different ways to run and/or start the execution of your
secure file transfer jobs. One such way is via REST API. But how to invoke such REST API via
PowerShell in an easy way? Here's an example script for you:

All you need to do is substitute the censored (xxxxxx...) API Key and Script ID with your own values,
and that's it, it'll work just fine.

$Header = @{
 "X-API-Key" = "xx"
}

$Body = @{
 jobType = "SCRIPT"
 scriptId = "xxxxxxxxxxxxxxxxxxxxxx"
}

$Parameters = @{
 Method = "POST"
 Uri = "https://127.0.0.1:44399/v1/jobs"
 Headers = $Header
 ContentType = "application/json"
 Body = ($Body | ConvertTo-Json)
}

Invoke-RestMethod @Parameters -SkipCertificateCheck

Scripting
Scripting examples and techniques in SyncJS, the JavaScript-based scripting language behind
Syncplify AFT!

Scripting

How to monitor a local folder
and upload files to your SFTP
server when they change
Let's say you have an SFTP server somewhere, and you want to use it as some form of "real-time
backup". That implies monitoring a local folder/directory on your computer's hard disk (or SSD),
and:

detect when new files are created and upload them
detect when files are modified and upload them

Furthermore, there are several other aspects to consider. For example:

your SFTP server may (should) not allow your client to be always connected
you may need to "delay" your uploads, because the OS (file-system) needs time to finish
writing the local file before you can access it and upload it to the remote SFTP server

AFT! can help you with all of that.

Here below you can see a well-commented AFT! script (in pure SyncJS language) that shows you
how to do all of the above the right way, taking all the above-mentioned circumstances into
account:

{
 // Let's enable console feedback, in case we're running this script via the shell
 ConsoleFeedback = true;

 // First, let's create the file-system watcher
 watcher = new FsWatcher();
 // Then we elect to delay notification by *at least* 300 seconds (5 minutes)
 // (useful to allow the file system to finish whatever operation is ongoing)
 watcher.DelayBySeconds = 300;
 // We may choose *not* to be notified of certain events
 watcher.NotifyRename = false;

 watcher.NotifyRemove = false;
 watcher.NotifyChmod = false;
 // We can specify inclusion and exclusion filters (optional, not mandatory)
 watcher.InclusionFilter = ['*.*'];
 watcher.ExclusionFilter = ['notes.txt', 'budget.xlsx'];
 // Almost ready, let's tell the object what folder we want to monitor
 watcher.WatchDir('C:\\TestFolder', false);
 // And then start the watcher
 watcher.Start();

 // We need to keep checking events indefinitely, an endless cycle is what we need
 while (true) {
 // Let's sleep for 500 milliseconds at each cycle, to keep CPU usage low
 Sleep(500);
 // When inside an endless cycle, it's always safe to check if we received a Halt signal at every cycle
 if (HaltSignalReceived()) {
 break;
 }
 // No Halt signal? Good, then let's acquire the list of pending event that we need to process
 evt = watcher.Events()
 // Do we have at least 1 event to process?
 if (evt.length > 0) {
 // We only connect to the server IF there are events to be processes
 var scli = new SftpClient();
 scli.Host = 'your.sftpserver.com:22';
 scli.User = 'your_username';
 scli.Pass = 'your_password';
 scli.Options.UploadPolicy = AlwaysOverwrite;
 if (scli.Connect()) {
 // Cycle over all pending events...
 for (var i = 0; i < evt.length; i++) {
 if (evt[i].Event == 'WRITE') {
 // If it is a WRITE event (new or modified file) let's upload it to the server
 scli.UploadWithPath(evt[i].Object, '/destinationpath', 1);
 }
 }
 // Do not forget to close the connection
 scli.Close();
 }
 // Set the client object to null to save memory

Happy coding!

 scli = null;
 }
 }
}

